Support #296
closedzero value weights using c_indnsub_xw
100%
Description
Hi,
I have been carrying out cross-sectional analyses using the combined wave 2 & 3 nurse assessment dataset 'xindresp_ns', along with data from the main survey of the corresponding wave. Having read through the user guide I have been using the survey weight c_indnsub_xw, as I believe this is the correct one for the type of analyses I'm doing. However there seems to be a significant proportion (7.8%) of the combined nurse assessment dataset that have a weighting value of zero when this is applied, and I would be grateful if you could explain this so I can decide whether to continue using the weighting.
The user guide seems to indicate that c_indnsub_xw is equal to the longitudinal weight c_indnsub_lw for households with no TSM, and that c_indnsub_lw itself is calculated using a method that includes multiplication by the nurse inclusion weight b_indnsub_li. I think it might be this inclusion weight that leads to the zero weights for c_indnsub_xw. If so, does this mean that individuals with a zero weight are basically those that had nurse data collected despite falling outside the inclusion criteria such an assessment?
To try to understand the problem, I also looked at the separate nurse assessment datasets for each wave ('b_indresp_ns' and 'c_indresp_ns'). It seems that applying the cross-sectional weight 'b_indnsus_xw' to the wave 2 dataset results in only 0.7% of cases with weights of zero, whereas applying 'c_indnsbh_xw' to wave 3 dataset has 10.8% with weighting values of zero. I wasn't sure why there should be such a big difference between the two, but in any case, as the proportion of the combined dataset derived from the wave 2 GPS sample is much greater than those coming from the wave 3 BHPS group this didn't really explain the issue of high zero weights in the combined dataset.
Many thanks,
Esther