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Advice to users on using weights when fitting multilevel (random effects) models 

There are no optimal solutions to fitting multilevel models to survey data, but some work better 

than others. Two-level models where the higher level corresponds to clusters in the sample 

design are the only models supported by developed theory. Other models can only be based on 

intuition and we recommend caution. 

Suppose you are fitting a two-level linear model with individuals at level 1 and level 2 

corresponds to household.  Households correspond to the units in the penultimate sampling 

stage in the general population. 

For some users, it could be tempting at this stage to appeal to the notion that one does not need 

to worry about the survey weights because clustering – an important aspect of the sampling 

design – has already been accounted for in the model.  However, this line of argument is not 

recommended because other aspects of the design (e.g., stratification, clustering in the primary 

sampling units (PSU) at the postcode sector level, variation in selection probabilities) have not 

been included. 

Generally, unless you are sure that every aspect of the complex sampling design has been 

included in the model then the survey weights should always be used. 

Therefore, we recommend you fit this model using ‘pseudolikelihood’ estimation (Pfeffermann 

et al. 1998; Rabe-Hesketh and Skrondal 2006).  Pseudolikelihood combines information about 

the complex sampling design of Understanding Society (UKHLS) and the modelling assumptions 

implicit in the two-level model to ensure the correct estimates of the model parameters and the 

standard errors of these parameters are reported. 

There is, however, a complication for the pseudolikelihood estimation of two-level models when 

the analyst is interested in estimates of the variance components (e.g., the variance of the 

random effects).  The overall survey weight must be split into its two components: Level 1 

weight 𝑤𝑖|ℎ  and Level 2 weight 𝑤ℎ where 𝑖 represents each individual in cluster (household) ℎ.  

As the overall survey weight is 𝑤𝑖ℎ = 𝑤ℎ × 𝑤𝑖|ℎ  , the user needs to know either, 

(i) Level 2 weight 𝑤ℎ  and level 1 weight 𝑤𝑖|ℎ  or 

(ii) Level 2 weight 𝑤ℎ and overall weight 𝑤𝑖ℎ. 

UKHLS provides data users with (ii) as set out in the example (see Box 1).1   

If you are using Stata, the easiest way to fit your model using pseudolikelihood is to use the 

mixed command. This must be done using the maximum likelihood not restricted maximum 

likelihood (REML) option because pseudolikelihood does not work for REML (at least as it is 

implemented here). 

You do not need to set up the survey function using svyset.  Instead, you set the following 

options when using mixed: 

a) Your Level 1 weight in [pw = <name of level 1 weight var here>] 

b) Your Level 2 weight in pweight(<name of level 2 weight var here>) 

 
1 The two types are closely related: type (i) weights can be created from type (ii) weights simply by 
dividing the overall weight by the level 2 weight for every individual. If you have type (ii) weight, it is 
recommended you derive and use type (i) weights. In the case of UKHLS, 𝑤𝑖|ℎ should be derived as the 

released individual weight divided by the released household weight. 
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c) Make your standard errors robust to PSU clustering by setting vce(cluster 
<PSU variable here>)  

As noted above, make sure the mle fitting option is specified and not reml. 

It is recommended that you conduct your analysis using scaled weights as set by the pwscale() 

option.  Estimating the model without this option runs the risk of producing biased estimates of 

the variance components (e.g., the random effect variances).  

Three scaling options are available each of which promises to reduce bias most effectively in 

different theoretical scenarios.  These options are as follows: 

1. pwscale(size)– scales the level 1 weights to equal the sample size. 

2. pwscale(effective)– scale the level 1 weights to equal the effective sample size (that 

is, the size the sample would be if it were drawn using simple random sampling) 

3. pwscale(gk)– scales the level 1 weights to be equal and the level 2 weight by the mean 

level 1 weight. 

Although we draw a distinction between type (i) and type (ii) weights, this makes no difference 

to either option 1 or option 2, which will return identical results.  However, 

pwscale(gk)requires the type (i) weights to produce the correct results. 

We advise estimating the model using all three scaling options to assess the robustness of your 

variance components estimates to different choices.  All (including the unscaled estimates) 

should perform similarly (but not identically) in terms of the regression coefficients.  In terms of 

the variance components, the theoretical justification for 1-2 relies on the population size in 

each Level 2 unit being large, but both have been shown to perform well even when this does 

not hold; conversely, scaling 3 does not make this assumption but is based on an approximation.  

Korn and Graubard (2003, table 1) show all three sets of weights are shown to have comparable 

performance for small population clusters. 

Finally, weights are not the whole story.  If Level 2 of the model does not correspond to the 

postcode sector PSUs used by UKHLS, cluster-robust variance estimation must be used to 

account for clustering (see point c) above).  However, it should be noted that the effects of 

stratification are not taken into account so inferences may be slightly conservative. 

For MLwiN users, teaching materials about how to use survey weights are available from the 

Centre for Multilevel Modelling web site (Pillinger 2011).  For three-level models and more 

generally, the weight scaling is more complicated (e.g., Rabe-Hesketh and Skrondal 2006). 

MLwiN can be run from Stata. 
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Box 1 
Example using Understanding Society data 
 
Assume PSU as level 1, household as level 2 and individual as level 3. 

 
global ms “where UKHLS data is stored” 

 

use "$ms/a_indresp", clear 

isvar pidp a_hidp a_age_dv a_jbstat a_mastat_dv a_nchild_dv a_scghq1_dv 

a_indscus_xw 

keep `r(varlist)' 

merge m:1 a_hidp using "$ms/a_hhresp", keepus(a_hhdenus_xw) nogen keep(3) 

merge 1:1 pidp using "$ms/xwavedat", keepus(psu strata sex_dv ethn_dv 

psnenus_xd) nogen keep(3) 

 

mvdecode _all, mv(-21/-1) 

recode sex_dv 0=. 

 

global fe_eq1 i.sex_dv c.a_age_dv##c.a_age_dv i.ethn_dv i.a_jbstat 

i.a_mastat c.a_nchild_dv  

       

drop if a_hhdenus_xw==0 

drop if a_indscus_xw==0 

 

generat wgtlevel1=psnenus_xd 

generat wgtlevel2= a_indscus_xw/wgtlevel1 

 

mixed a_scghq1_dv $fe_eq1 [pw=wgtlevel2] || a_hidp:, mle 

pweight(wgtlevel1) vce(cluster a_psu) pwscale(gk) 
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